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I 1. Introductio

3 In this paper we consider the problem of finding the n-bit result of dividing one n-bit number by

another. We present circuits with asymptotically small size and depth for this problem and we derive from

S them, efficient PRAM algorithms for division in the bit model. Our primary result, which is a size-efficient

implementation of the circuits in Reif [Re86], is a logspace uniform family of circuits for division of depth

D(n)=O (logniloglogn) and size S (n)=O ((l/84)n+), for any 8>0. This translates into a uniform parallel

~ algorithm on a shared memory machine (PRAM) with bit operations and exclusive memory writes with

parallel time D (n) using 0 (S (n)) processors. It also translates into a parallel algorithm for a concurrent

§write PRAM with parallel time 0 (D (n)/loglogn) using 0 (S (n)) processors. Finally, we apply the results

S of Beame, Cook and Hoover [BeCoHo86] to obtain a polynomial-time uniform family of circuits for divi-

sion of depth O((l/82).ogn) and size 0 (S (n)).

L Parallel Models of Computation

IA (bounded fal-in) boolean circuit is an acyclic labeled digaph. Nodes are labeled as input, con-

stant, AND, OR, NOT, or output nodes. Input and constant nodes have zero fan-in, AND and OR nodes

have fan-in of 2, NOT and output nodes have fan-in of 1. Output nodes have fan-out zero.

Let B=(O,l). A boolean circuit with n input and m output nodes computes a boolean function

f'.B' The size of a boolean circuit is the number of nodes in the circuit excluding input and output

S nodes. The depth of the circuit is the length of the longest path among ail paths from input so output nodes.

S Given a sequence of circuits C1,C2, • • • we denote dhe size of the a-th ciruit by SJZB(CQ) and its depth

by DEFH(MC.). If there exists a function S(n) such that SZE(C.)%S(n) for each n dhen we say that the

S size of the sequence is 0 (S (n)). Similarly we may define the depth O(D (n)) of the sequence. We say a

sequence is in SIZE-DEPIH(Sn),D(n)) if it is simultaneously bounded in sz by 0($(n)) and in depth

by O(D (n)). A sequence of boolean functios will be referred to as a problem, and a sequence of circuits

sucxh that the n-th circuit realizes the a-th boolea function is an algoitm to solve the pobiem We will

say that an algorithm gives circuits of .mall sji for a problem if S (n),O (f (5).n t4), for any 8>0 and for

- some functionf. Small size circuits are demable since they lead to low hardware cots. For parllel com-

putation, we also want D (a) to be small, sinc D (A) gives the parallel computation W=me
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A sequence of circuits is logspace uniform for a problem if there exists a logspace-bounded wring

U Imachine that computes a suitable binary encoding of the n-th circuit on being input the number n in unary.

For theoretical reasons logspace uniformity is a desiable property in a sequence of Circuits (see, e.g.,

[Ru8l]).

A PRAM in the bit model is a parallel RAM with access to a global memory and with each processor

capable of a bit operation in unit time. A CREW PRAM is a PRAM allowing concurrent reads but only

S exclusive writes on the global memory. A CRCW PRAM allows concurrent reads and writes. A PRAM

algorithm is uniform if the algorithm is parametrized by n and works in the parallel time bound for all

values of n.

l 3. Previous Work on Circuits for Basic Arithmetic Operations

For the problem of adding two n-bit numbers Krapchenko DKr70], and Ladner and Fischer LaFi80]

present algorithms which achieve asymptotically optimal delay of logn and a linear size bound which are

f the best possible in this model (see [Sa76]).

For adding n n-bit numbers Ofman [0f62] and Wallace (Wa64] have O(logn) depth circuits with

0(n2 ) gates, which is linear in the size of the input.

The best known circuits for the multiplication of two n-bit numbers are due to Schonhage and

Strassen [ScSt71]. These have O(logn) depth and O(nlo3nloglogn) size.

In the division problem, we need to compute the n-bit quotient a/ where a and v ae n-bit numbers.

Since u/v=u(llv), and multiplication can be done efficiently by the Schonhage-Strassen algorithm, atten-

tion has been concentrated on the computation of the n-bit reciprocal of an n-bit number. The first good

S circuits for the reciprocal problem are due to Cook [Co661. The method used in (Co 661 to compute the

1 reciprocal is to first normalize v to a number in the interval [12,1), set x-l-v, and compute

1/(l-x),l+x+Xz 3+.. where the fis n terms of the series give sufficient precision. The problem is thus

- enlae d w a f y enmg z' ,jne i - a-M a.n . tCa6pus a O(bfta ) kg

polynomial size family of curua for this problem. Recent attempts to obmn beder cxicuids for divisiM

S have all oncenmraed on the powering problem.
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A log depth polynomial size circuit for division has been obtained in (BeCoHo86], which solves the

U powering problem by using a combination of Chinese remaindering and taking logarithms over finite fields.

The algorithm does not appear to be logspace uniform, though the circuits are polynomial time computable

Reif IRe86] has logspace uniform 0(lognloglogn) depth division circuits of polynomial size, parametrized

only by n, so that the algorithm translates into a uniform CREW PRAM algorithm. The division circuits in

both [Re86] and [BeCoHo86] are worse than quadratic in size. Thus while there are known small size cir-

cuits for addition and multiplication of O(logn) depth, this is not the case for divisio.

In the next section we present circuits of size 0((1/4)'n ""), for any 8>0, that acieve the same

depths as in [Re86] ad .BeCoHo86], thus obtaining small size circuits of small depth for the division

S problem.

We close this section with a brief discussion of the DFr, presenting the definitions and theorems that

S we need (for further details and proofs see (AhHoUI74])

3 Let R be a commutative ring with identity 1. Then the set of all infinite sequences from R with only

finitely many non-zero terms forms a commutative ring with identity I under mponentwise addition, and

multiplication defined by convolution. This ring is called the ring of formal polynomials over R and is

denoted by R[t]. and the sequence whose (k+l)-th term is non-zero and whose la terms am all zero is

~ denoted simply by (ao,aa,...,) and also often written as ao+alt+a2 t2+..+akt .

Let R have a primitive n-th mot of I (denoted by t), where n is a unit in R. Le. a has an inverse in

R. Let thenznmatixMa(m)bedefinedby ,ju0,1,...,Q-0. ThematlxMisinvenlble. IfA

is an n-vector, define DFT,(A) - MA and DF7.I(A) - M1 A. Note at DFT'I(D FT t(A)) - A. [CoTu65]

introduced an algorithm which mmlaM iMo a Sie 0,(a216), depth 0(log) Circuit for mputing the

DFr f n-bit numba. fwe firtherame tht themeexim in Rs chthatu -I -andV2 - then

~ with any (n-l)-degree polynomial A(),aG+at4a 2t2 +...+a._ut-1 we ean asociate A*

(aO,a.V , ... a2V2) We now saMe

I The mnegatively wrapped convolutwn theorem: LetAi(), i-1,2,...,rbe (n-l)-delre polynmias,andB(t)

- lAi(t), this being the ring product in R(t]. Let D (t) a 8 (t) mod t"+l. Then D u=DT'I (rDFT.(A*))

MCA&"
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where the multiplication in the transformed domain is componentwise.

3 4. The Reciprocal Problem

Let x be an n-bit number in [1/2,1). We wish to compute v=lI/x correct to n places to the right of the

point. Let u=l-x, where O<u,<1/2 and u has n bits. Then lI/x=lI/(l-u)=l+u+U 2+u 3+.... We would obtain

llx to sufficient precision if we compute l,u,u2,u3... ,u" - exacdy (each of these numbers can be

represented exactly using at most n 2 bits since u has only n bits), and add them up and truncate the sum to

n bits to the right of the point. Since in this method the powers are computed to n 2 bits of precision, the

resulting circuit has size Qgn 2). However, the computation of the powers to n2 bits is unnecessary, as is

shown in MePr86]. Consider the factorization:

. ~~~~l+U+M2 +...+u'--t (l+U+U2+...+u,-IX l++u+ 2 % .. u : t) .(ru .. u , z

where $=n u, m being a fixed integer. Denote the i-th factor (l+ua -1+-1 fl+...+21'-), by *', -

i=O, l,....(m-1). We can compute each factor #j', and then multiply the m factors and truncate the result to

n +2 bits to get li/. Note that #' is actually the sum of the powers (u" - 'Y for j= ,l,2,...,(s-1). It is proved

in [MePr86] that if we use an n+log(12m) bit approximation to u'" (which we denote by 9j), compute Of,

j=O...,s -I exactly, Le. to ns bits, and add these s numbers to get an ns-bit approximation # to #j', then the

Sproduct of the m j truncated to n bits gives an a-bit approximation to Lz. The O are obtained as follows:

0o is initialized to u, and O, is obtained by computing I -t.a and tiicating to n+log(12m) bits. Note that no

S computation involves more than ns bits. Though the above factorization not valid if n',ns is not an

Sinteger, this algorithm for computing the reciprocal is still good with: - rx"I. since this only meas that

we compute even mare than r'ms in the i

Let SI(s,n) and Tt(sa) denote the size and time of computing each #. If So(n) is the size of

re cation, then So(A) - O(m I (s,)+n (ns)), where the first tam on the RHS is the cost of comput-

ing m #, and the second term is the cost of multiplying them together. If we denote the depth for coemput-

S ing reciprocal by TO(n) then To(n) - O(mT, (sn)+logmplogu), where the first term is the depth for comput-

ing m # and the second term the depth for multiplying them together. Since # is the sum of 01,

w Jth ibengofO(n)biifwednotesizeofcompungthes-tdapowerof a.bit
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~ number by S2(s,n), we find that S I(s,n)=SS2(S,n)+ns2, where the first term is the cost of computing the s

U powers of 0, and the second term is the cost of adding them up. Similarly T1 (sn)=T2(sn}4-ogns. where

the first term is the depth of computing the j powers of Bi in parallel, and the second team the depth of

~ adding them up. From the above it follows that

S0(n)=sMS2(s~n)+nms 2+mU (As)1

TO~n)=MT2(sn)mlogns 2
We now develop an efficient algorithm for computing the s-th power of an n-bit number and determine its

size S2(s,n) and time T2(S,n). We actually describe an algorithm that computes the s-th power of an r-bit

number modulo 2'+l. This will be used to compute the s-tb power of an n-bit number exactly, by treating

~~ the input as an us-bit number and computing its s-th power mod 2'+1. Our algorithm is basd on the

modular product algorithm in [Red6] and uses the DFf. We first introduce some notation. The ring Z2&+,

has k as a unit, o~r-4 as a primitive k-th root of unity and lV--2 satisfies V=-l and 4P=w. Hence DF1 and

Winverse DFT of k-sequences can be defined in this ring and by t notation, DFT&(x,,x I ... ,z4 1) mod 2k+l

we mean the DFT (as previously defined) in the ring Zea4 with ao=4. Denote by (xo....,x1-1) mod 2e+1 the

vector (xo,...,xk-..) with each of its components reduced modulo e+I. We now state the algorithm and fol-

S low it up with a discussion.

S The modular power algorfiun

SInput x=Cr-1 r,- ... Co is of r bits, the least significant bit being r, and the most significanit bit being r,-.

ruis apower of 2. Output is z' mod 7+1. where s-rg,O0ce1/2.

Funczion Modpower (xrj)

begin if r:54
Modpower4.-x' mod 2'+1; (* carmpute directly by constant depth, constant size circuit

since r!94 a s!2; this is the base step of recursion)

begin
case rZs2 do
begin
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divide x into k equal blocks of I bits each and form the vector (xo1, x...t-)
where A . C+;( this is the vector g (t) in the discussion below
5)

(Xo,X,X2, ..... x,. 1 -)-(XoX I2,x222.. ... xkl2 - ') mod 21;(* this isg"* *)

(xo0 . .... -4--DFTk(xo.... xk-l) mod Z2&,1; (* this is DFTk5(g) )
par do xi,--Modpower(x~,k,s); (* this is the componentwise powering of k
smaller numbers in the transfonned domain, done recursively in parallel 5)

(xo,...,xk_)*--DF1 (xo,...,x,-j modZ2 +l; (* this isd *)
(Xo.x 1 ,x2 ..... xk- )*-(Xo.X 121 .x2 2 ... Xk-12 -0 -1)) mod 2k+1;
(. this is d (0 )
Modpower-(o+I(2)+Z(21)2+...+xk_l (2 1)k-1) (* this is d (2'), which is what

ed we want )
end
case r<s2 do
begin
e x-x' mod 2+1 (0 compute by the modular product algorithm in [RS6] e )
end

end
_ end.

U "'" Remarks on the algorithm

The main idea in the algorithm is to split x into k blocks, k=24d'i, and constru the vector

g(t)=ao+alt+a2t2+...+ak_1tk- l. If l=rlk, then g(2')=x. If we let d(t).(g(t)y mod t+l, then

d(2') a (g(2'))' mod (2l)"+l ox' mod 2'+l. Finding d(t) would solve the problem, since its value at 2' is

the desired x' mod 2+ 1. The polynomials above are over the ring of integers Z but we do calculations over

Sthe finite ring Z2k+1 . Apply the convolution theorem to get d-*=DF7t1 (DFTk(g")) mod 2h+l, where the

powering is componentwise in the cransformed domain. Notice that there are k powerings in the

transformed domain, each of k-bit numbers mod 2 +l, where k is smaller than r, and we do these power-

ings recursively. We need to be sure that the d computed as above (in Z.) gives de correct d (in Z This

will be so if the coefficients of d are small enough Le., 2-. TWs can be arranged by requiring s=r',

S_ O<esl/2, and by choosing k=24- as we have done. (It is shown in (Re86] that it is sufficient to choose s

and k so that 2s(rlk+l+logk)5k-I is satisfied. The above choices of s and k satisfy this inequality for

sufficiently large r.) Essentially what we are doing is making each coefficient of g small enough by split-

S ting z into sufficiently many pieces. Since the ring Z2,+ grows with k (the number of coefficients in g), if

we have a sufficiently large number of coefficients and we make the power s small enough, we can expect

C 9 g" to have small enough coefficients, so that it can be represented without erm in Ze,..
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Choice (1) of the case statement of the algorithm is entered recursively log(1/e) times on first calling

U the program. We start with k=r and in each subsequent application k+--2'1, and we keep going until
k<s 2. We set up the recurrence ko=r, k-=24 7 and solve to get k (4s)1'(rJ'. In about log(l/e)

steps k, <s2 .

At this point we need the s-th power of an s2-bit number. Now choice (2) of the case statement is

executed. Since s=re is small compared with r, we do not attempt to be efficient with this residual compu-

tation, but simply apply the algorithm in [Re86]. The size complexity of the algorithm is dominated by

choice (1) of case, as our analysis will show.

5. Gate Count

As already mentioned the exact value of x' may be found by treating x as an ns-bit number and com-

puting x' mod 2"+1. This is accomplished by calling Modpower(xns,s). We now compute the size and

depth for this problem. We solved a recurrence for k, above with initial condition ko=r. With initial condi-

if tion ko=ns (which is the case in the exact powering problem), k,=4l1x'M n('s; Recall that we denoted by

S 2(s,n) the size needed for computing the s-th power of an n-bit number. If S(sn) denotes the size of com-

puting the s-th power of an n-bit number mod 2+1 then S2(sn)=S(s$,ns) as seen above.

From choice (1) of case in the algorithm we obtain

S(s,ns)=S(s,ko)=c jiogki+kS(skj)
The first term on RHS is the cost of taking DFT of a k-vector in Z2 +i by the Cooley-Tukey algorithm

[CoTu65]. The second tem is for the recursive computation of kI smaller powerings. (Computing S6 from

* and d from d" in the algorithm needs O(k 1) per enty and hence O(kl) overall which follows from

S lemma 7.6 pp 266 [AhHoUI74]. Computing g (2') is like adding two n-bit numbers, and needs only size

O(k2). These steps in the algorithm are all dominated by the cost of computing the DFT.) Now replace

S ($,k1) by an expression in term of k2 and keep doing this for I steps to get

I i I
(s ko)=(c.(fk,)kIog)+(kflj,)S (s,k1)

jml jul sml

rn Using the formula for k, we get

-k , '
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Also we have

3(hkj)k,=4'nsI'+
i-I

and logkic'logn since s=-n with e512. This gives

! i I

S (skO)=c"logn(7,(flkj)i)+(flki)S (s,ki)
i- j=I i-I

Using our previous formula for lk we get
-I

S (sko)=c"n4's't+ logn+4-+(v2n 1-(12) SS (s,k)

With I=log(lIe) and s=n' this becomes

S (n',n 1+S)=(c"L,2)n'"Kwg(V)logn+(le)n 'e' e)S(n Fn-)

S S(nen*) is the size complexity of choice (2) of case, which is O(n e). This gives us

S2(In,n )4 (nn 1 e)=c-(/e 2)n + +3 e gI

Using this in equation (1) we find that the size for computing reciprocal is
$o (n,n)=c( l l3)n I+4edIoJIa

(We have omitted the second term on the RHS of eqn (1) since it is dominated by the firsL) From mis it

follows that for any 8>0, there are circuits for computing the reciprocal that have size O((l/54)n 146). Sup-

pose 8>0 is given. We solve for e using the equation &=4e+dog(l/e), and construct circuits as above with

S this e. Clearly e<8 and since for small e, 8<04 , the above result is true.

Recall that we denoted by T2(n',n) the depth for computing the ng-th power of an n-bit number.

Nce: that choice (1) of case is entered log(l/e) times, and each application is dominated in depth by the

DFT computation. The total contribution from all this to the depth is OOog(l/e)logn). As for choice (2), the

[Re86] algorithm needs 0(logrloglogr) depth to compute the r-th power of an r bit number mod 2"+1.

Using this with r=nt we see that choice (2) of case contributes O(elognloglogn) to the depth. Hence we

have

T2(n,n)=iog(l/c)lonP+eognloglogp

i Using this in equation (2) we get the depth complexity of division

T0(n)=(1/e)Qlog(l/e))logn+IogloglognO0 (lognloglogn)

L0
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We observe that the additional factor loglogn for the depth in the above algorithm arises from the

final application of the [Re86] algorithm directly in choice (2) of case. We can avoid this at the cost of los-

ing logspace uniformity by using one application of the [BeCoHo86] algorithm to complete the computa-

tion once we get to the point where we need to compute the ne-th power of an n2l-bit number. Until this

point we have used depth of log(l/e)logn and with the additional depth of elogn of the [BeCoHo86] algo-

S.r ,i rthm, the ne-th power of an n-bit number can be computed in depth O(log(l/e)logn). Substituting this in

plact of T2 (ne,n) in equation (2) we find that the depth of the division algorithm incorporating the

[BeCoHo86] circuit is O((l/e)log(1/e)Iogn) = O((1/8 2 )Iogn). The size of this application of the

. ,  [BeCoHo86] circuit is O(n4'), so the size result previously obtained for the algorithm based purely on

[Re86] is not affected.

For PRAM implementation, we note that Modpower is parametrized only by r and is logspace un-

form, so our division circuit translates to a O(lognloglogn) time algorithm on the CREW PRAM ( with bit

operations) using O((1/8 4)n 14) processors, for any 8>0.

Using standard techniques, (see [ChStVi84]), our logspace uniform O0ognloglogn) depth division

circuit can be compressed in depth to O((l/k)logn) for any k>0, with an increase in size of a factor of
44

214'. We let k=-l/2 and translate the resulting unbounded fan-in circuits to a CRCW PRAM algorithm in

,the bit model running in time Ologn) and using O((1/84)n' +6) processors, for any 8>0.
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